

ABSTRACT

Wireless Sensor Networks are increasingly attracting

many fields for monitoring and understanding the

characteristics of different applications. Unfortunately,

these characteristics also have an impact on the

functionality of the network and, in some cases, cause it

to deviate from its normal operation. Also, they cause a

reduction in the quality and the quantity of the data

collected by the network. This paper proposes a

distributed monitoring performance algorithm which

tracks these deviations and isolates those that degrade

network functionality. The results obtained from the

empirical and simulation experiments show that the

algorithm achieves a high-level of detection reliability

with resilience to both high packet loss and

environmental changes.

Keywords: Wireless Sensor Networks, WSNs

performance measurement, on-line fault detection, WSN

outlier detection.

1. INTRODUCTION

EVIATIONS of nodes from their normal operation in

Wireless Sensor Networks (WSNs) are regular

occurrences, not isolated events as in traditional networks.

This is due to the goals in network design of reducing the

cost of node manufacture and deployment, reducing the

size of network nodes, and reducing their energy

consumption. Such reductions directly affect sensor node

resources and the flexibility of the protocol used; they also

increase the impact of external and internal interference.

This deviates network nodes operation from their normal

behavior and causes reduction in the quality and the

quantity of data collected by the network.

Operational deviations in the network and its nodes arise

as a result of systematic or transient errors [1]. Systematic

error is mainly caused by hardware faults, such as

calibration errors after prolonged use, a reduction in

operating power levels, and changes in operating

conditions. This type of error continuously affects the

operation of nodes until the problem is rectified. Transient

errors, on the other hand, occur because of temporary

external or internal circumstances, such as various random

environmental effects, unstable characteristics of the

hardware, software bugs, channel interface and multi-path

effect. This type of error deviates nodes’ operations until

the effect disappears.

The effects of these deviations can be divided into two

groups. The first reduces the quality of the data at a node

and/or network level by deviating measurements from their

actual values. This happens either by a constant drift value

(i.e. they become biased), changes in the differences

between a sensor measurement and the actual value (i.e.

drift), or sensor measurements remaining constant

regardless of changes in the actual value (i.e. complete

failure). The second effect reduces the quantity of data

collected by the network. This happens either by the node

dropping packets, or by it constructing incorrect

collaboration trees for data gathering and routing.

In some practical deployments, such as [2]-[4], an analysis

of the collected network data showed a reduction in data

quality which reached between 49% and 55% for that

quantity of data. This reduction is caused by the deviations

mentioned above and, in some cases, the network needed

to be redeployed again to collect the required data because

the available data were meaningless. The researchers’

analysis for the data collected in these deployments

expected an improvement of the deployed network’s

functionality of up to 51%, in terms of resource usage and

the accuracy of the collected data, if a real-time monitoring

tool is used to detect, report and isolate such deviations.

The work in this paper is motivated by the need to find a

tool that will use a very low level of network resources but

will, at the same time, detect deviations that affect the

quality and quantity of data collected by the network

before they have a high impact on the network’s

functionality. The paper proposes distributed performance

network monitoring tools that detect these deviations and

isolate the detected faulty nodes from the neighbourhood’s

functionality. The empirical and simulation experiments

that were conducted showed a high level of performance of

the proposed algorithm; it was also resilient to both high

packet loss and environmental changes. Some of the most

important results from the simulation experiments, which

showed the ability of the algorithm in tracking spatial and

temporal correlations between neighbour nodes, are

discussed in this paper.

Increasing the Reliability of the Collected Data in Wireless Sensor

Networks

 Yaqoob J.Y. Al-Raisi

 Sultan Qaboos University

 Muscat, Sultanate of Oman

 yalraisi@squ.edu.om

Nazar Alfadil

Fahad Bin Sultan University

Tabuk, Saudi Arabia

nfadel@fbsc.edu.sa

Sultan Aljahdali

Taif University

Taif, Saudi Arabia

aljahdali@tu.edu.sa

D

290978-1-880843-83-3/ISCA CAINE/November 2011

The remainder of this paper is organised as follows:

Section 2 discusses related work in WSN functionality

degradation detection; this is followed by an explanation

of the algorithm approach. The fourth section discusses the

results of the experiments at node level. Finally, the paper

ends with a conclusion and suggestions for future work.

2. RELATED WORK

In data stream applications, such as WSNs, deviations in

the data are detected by generating the residual of a

monitored variable in terms of physical or analytical

redundancy [5], [6]. Physical redundancy generates an

estimate of the actual value of a quantity on the basis of the

available redundant information. This is accomplished, by

either statistical methods (such as descriptive statistics and

inferential statistics), or by data fusion. The main

advantage of this type of redundancy is that it is relatively

easy to implement and provides a high degree of certainty.

The reliability and performance of such methods mainly

rely on measurement accuracy. Analytical redundancy

methods, on the other hand, provide values other than

direct measurements from the parameters and variables of

interest using a process model such as Kalman filter, Parity

relation, Principal Component Analysis (PCA) and

Artificial Neural Networks (ANN). These methods are not

easy to implement and they depend on the reliability of the

process model.

Implementing most of the above-mentioned methods in

WSNs, especially analytical methods, is either not

possible, needs high spatial resource nodes, or has a high

impact on the network’s lifetime. As a result, researchers

have tried to simplify the complexity of the above methods

as a tradeoff with the method’s detection accuracy or have

used more than one method that increases detection

accuracy.

Abdelrahman, in [10], used a fusion algorithm that utilises

a Parzen estimator for calculating a probability distribution

function (pdf) for measurements. This constructed pdf is

based on weighted Gaussian functions whose parameters

depend on the sensor’s average noise level and its self-

confidence. His proposed method needs relatively high

resources in terms of the processing and memory required

as it calculates the pdf of different neighbour node

measurements and also calculates the intersecting areas of

these pdfs and the intersection centroid in order to find the

estimated true measurements. In addition, his algorithm

needs to estimate the pdf standard deviation of each sensor

node based on the standard deviation of the noise

associated with an individual node. This makes his

algorithm complex in term of the resources available in the

existing sensor node platform which also needs a spatial

resources node to implement it.

Elnahrawy, in [7], used a Bayesian approach that combines

prior knowledge of sensor readings, the noise

characteristics, and the observed noisy readings. This

approach has proved to be robust in the detection of sensor

node deviation but, because of its complexity and its

model parameter calculations, the algorithm needs to be

implemented on a spatial node with high resources. To

reduce the complexity of the above-mentioned algorithm,

Krishnamachari, in [11], proposed a distributed Bayesian

algorithm for detecting and correcting these deviations.

His algorithm was simple but it does not detect the gradual

drift changes in the deviation of nodes. In addition,

network coverage problems are not detected.

Bettencourt, in [12], proposed a distributed algorithm that

would detect measurement errors and infer missing

readings. His algorithm, compared with the Bayesian

method, is faster in learning and has low memory storage.

Unfortunately, his algorithm is not resilient to loss and

drift.

From the perspective of packet losses, Ramanathan, in

[13], proposed a tool (called Sympathy) that detects and

debugs failures in Wireless Sensor Networks. The

algorithm debugs low-level statistical changes in the

network by drawing correlations between seemingly

unrelated, distributed events; it also produces graphs that

highlight these correlations. From this, the algorithm

detects root-cause failures. Unfortunately, this tool needs

to send and receive test packets to conform the detection of

a failure. Moreover, it tests only the low level parameters

to detect network deviations.

3. ALGORITHM APPROACH

In order to monitor the performance of WSNs, the Voting

Median Based Algorithm for Approximate Performance

Monitoring (VMBA) is proposed. This algorithm is a

passive voting algorithm that collects its metrics directly

from the application by utilising the overhearing that exists

in a neighbourhood. The analysis of the proposed

algorithm has been simplified such that it only requires the

most recent readings of neighbour measurements at that

time instant and, from it, a neighbourhood reference for the

operation that has been deduced: i.e. neighbourhood

measurements median. Then, the time instant data

collected from that neighbourhood are compared with this

reference by calculating the residual of the difference.

After that, each residual is tested against a threshold whose

accuracy depends on the rate of the propagation change of

the monitored phenomenon at the end of the sensing range

of the monitoring node. This simple approach reduces the

complexity of the tracked method, reduces the memory

that is required, and makes it possible to implement on

existing sensor node platforms.

The algorithm is divided into four different modules; i.e.

listening and filtering, data analysis and threshold test,

decision and confidence control and warning packet

exchange. In this section we give some definitions and

then the VMBA functional algorithm presented.

291

3.1 Definitions

The notations used in the algorithm are listed below:

•
iS : Monitoring node used in VBAM algorithm.

• T: waiting time that depends on the reporting rate,

node location, and network synchronization time.

• k: Number of neighbours.

• N(iS): Set of iS neighbour nodes; i.e. 1iS ,

2iS ,…, ikS .

•
i

jx : Measurement of node j received by

monitoring node i.

•
i

jL : Loss counter at node j (by monitoring node

i).

• LC , MC : Minimum and maximum limits of the

sensor node that depends on its characteristics.

•
i

jD : Deviation detection counter of node j by

monitoring node i.

• imed : Neighbourhood sensed value median

calculation made by monitoring node i.

• 1−imed : Previous neighbourhood median

calculation.

• med∆ : Allowed change in the phenomenon

characteristic that depends on the temporary and

permanent precision of the application.

• iM : Median deviation counter at monitoring

node i.

• jd : Deviation of node j from calculated median.

• iR : Uncorrelated readings counter at each time

interval.

•
i

jCOV : Coverage problem counter of node j

monitored by node i.

• iN : Neighborhood malfunctions counter.

• MΘ ,
CΘ ,

dΘ ,
wΘ : Thresholds of median,

coverage, distortion and monitoring window

respectively whose values depend on the

tolerance of the network protocol characteristics

detected changes.

•
iML : Median of

i

jL at the monitoring window

size.

3.2 Algorithm Modules

The listening and filtering module is responsible for

examining the validity of the received neighbour nodes

measurements by filtering those readings beyond the range

of the sensor’s physical characteristics; as shown in the

pseudo-code in Figure 1. The module then constructs

neighbour readings tables and builds statistics in the loss

table for neighbour readings.

This module is considered the most important module in

the algorithm because it is concerned with the construction

of tables that the algorithm depends on for its analysis.

1: Each iS sense the phenomenon and wait for

 time T to receive N(iS) readings

2: IF t > T THEN

3: For each un received
i

jx increment
i

jL ;

4: IF LC >
i

jx > MC

5: Remove
i

jx from data set and increment
i

jD

6: Calculate imed of the available iS data set

Figure 1. Listening and filtering module pseudo-code

The second module; i.e. data analysis and threshold test

module; tests the content of these tables. This is done by

evaluating the data with regard to assigned dynamic or

static limits calculated from a reference value or median.

The proposed algorithm has followed a straightforward

approach in calculating faulty deviations in sensor

functionality. Its analysis assumes that true measurements

of a phenomenon’s characteristics, following a Gaussian

pdf, centre on a calculated median of neighbourhood

readings. Any deviation is controlled by the correlation

expected at the end of the sensing range of a node, and the

sensor nodes’ measuring accuracy (i.e. the phenomenon’s

power dissipation model [14], where most of the physical

processes monitored by a WSN are typically modeled as

diffusion models with varying dispersion functions). This

assumption is based on the fact that the standard deviation

of the changes is specified by the network designed goals

at the end of monitoring node sensing rang. Any sensor

measurement that is not in this region is considered

deviated to a degree equal to the ratio of the distance from

the neighbourhood median value to the median value. This

is because any external impact will affect all neighbours at

the same time but to a different degree depending on

theirlocation from the nodes and the position of the nodes

from each other.

In addition, the second module tests the effect of any

losses on the reliability of the collected data by calculating

the degree of distortion in the neighbourhood data that has

occurred because of its affect on the collected data

accuracy and network functionality. This is done by

calculating the ratio of the number of healthy readings to

the total number readings as shown in Figure 2 step 8.

1: IF |
imed -

1−imed | > med∆

 Increment iM and let imed = 1−imed

2: jd = |
imed -

i

jx |

292

3: IF jd > 1Θ and |
i

ix -
i

jx | < 1Θ

4: Increment
i

jCOV

5: ELSE increment
iR

6: IF
k

Ri
 > 40%

7: Increment iN

8: IF
k

Ri
* jd > 1Θ

9: Increment
i

jD

Figure 2. Data analysis and threshold test module pseudo-

code

The third module; i.e. Decision confidence control

module; is concerned with tracking changes in the health

of neighbour nodes in an assigned time window. This is set

depending on the characteristics of the network application

and the required response detection time. If exceeded, a

request is sent to module four in order to send a detection

message to the sink identifying the suspected node number,

the type of fault, the number of times it has been detected

and the effect of the detection on the neighbourhood data

and communication. The function of this module is shown

in Figure 3.

When module four receives a send request, it checks its

neighbours warning exchange memory to ensure that none

of the neighbour nodes have reported the same fault in that

monitoring window period. If none of the neighbours have

so reported, it sends a message or it cancels the request. In

addition, this module tests warning messages received

from its neighbours with statistics from module three.

1: Calculate iML

2: IF
iML > 60%

3: Send to module 4 a request to send an

 inefficient power consumption warning

 message

4: IF
iM > MΘ

5: Send to module 4 a request to send a

 neighbourhood malfunction due to losses

 warning message

6: IF
i

jCOV > CΘ

7: Send to module 4 a request to send to

 detecting node j a coverage

 problem message

8: IF distortion > dΘ & median of
i

jL > 60%

9: Send to module 4 a request to send a

 degrade detection in network

 functionality message

10: IF
i

jD > wΘ

11: Send to module 4 a request

 to send a detection of node

 j malfunction message

Figure 3. Decision confidence control module pseudo-

code

If the suspected node flags up a counter indication smaller

than a threshold (that is, below the 30% set for the

experiments), a message will be released indicating ‘NO-

FAUL-EVIDENCE’ regarding the received warning

message. On the other hand, if the threshold is higher or

equal to the threshold, then the node cancels any similar

warning message request from module three during that

monitoring period. This is to ensure the reliability of the

warning message detection and to correct any incorrect

detection that may occur because of losses or other

network circumstances. Moreover, module four reduces

the algorithm warning packets released by checking if any

of its neighbours sent the same message at that time

interval. If it been sent the algorithm will discard module

three requests as shown in Figure 4 part 3.

4. PERFORMANCE EVALUATION

VMBA algorithm performance can be evaluated for eight

different aspects: deviation detection in single and multi-

hop levels, algorithm detection threshold, algorithm

detection confidence, algorithm spatial and temporary

change tracking, the impact of packet losses on algorithm

analysis, resource usage at node and network levels, the

impact of algorithm programming location in protocol

stack, and algorithm released warning messages. In this

paper, we considered the algorithm spatial and temporary

changes tracking for neighbourhood sensor nodes at node

level.

1: Receiving neighbour warning

a) Check received warning with the same

module 3 counter of reported node.

b) IF module 3 counter < 30%

c) Release ‘‘NO-EVIDENCE-OF-FAULT’

message

d) ELSE flag the stop sending of the same

message from the node at this monitoring

time.

2: Receiving module 3 request

a) Test stop flag of received request

warning

b) IF flag = 1 discard message

c) IF send message repeated 3 times send

‘FAULT_MESSAGE_STOP’ message

and flag stop fault counter.

d) ELSE send the requested message by

module 3.

3: Testing warning packet release

a) IF detected fault returns to normal reset

the same fault counters, send

‘FAULT_CLEAR’ message and

recalculate protocol tables.

b) IF step 2 and 3-a alternate for the same

293

fault three times in a predefined

monitoring window, the module send s

an‘TOPOLOGY_UNSTABLEe’ warning

message to report the detection and

flags a permanent fault counter to stop

reporting the same fault.

c) By the end of the predefined period reset

all counters.

Figure 4. Warning packet exchange module pseudo-code

4.1 Data set

To evaluate the performance of spatial-temporal data

deviation algorithm tracking, and test the effect of

removing the confirmed faulty node on the accuracy of the

neighbourhood collected data , real world data sets were

used such as the Intel Lab data set [15]. This data set

consist of temperature, humidity and light intensity

measurements, and was collected by 54 sensor nodes

deployed in the Intel lab from February 28th until April 5th

2004 for 720 hours with a scheduled communication

approach used with a waking period of four seconds and a

13% duty cycle. The deployment goal of this network was

to test the behaviour of a sensor network with different

conditions of battery power depletion, traffic generation,

and multi-hop aspects. As a result of this, the data set

collected from this experiment had a lot of missing data,

noise, and failed sensors, especially when the battery levels

were low at the end of the experiment.

4.2 Performance Evaluation Metrics

Four metrics were chosen to analyse the results of the

experiments, as shown in Table 1. The first metric is the

residual value of deviated neighbours, which is the

difference between the neighbourhood median and the data

at a given time instance. This metric computes the

diversity level of individual readings from other

neighbourhood nodes. In addition, it shows the behaviour

of the fault. The second metric was the weighted residual

metrics: i.e. the difference between a reading and the

median calculated at a time instance multiplied by the ratio

of similar correlated readings compared to the total

number of readings at the same time instance. This metric

shows the weight of each deviation on the neighbourhood

node collected data. The third metric was network

performance, which is the ratio of healthy readings as

opposed to the total number of nodes in the

neighbourhood. This metric computes the effect of losses

on the network’s functionality.

4.3 Experimental Results

Figure 5 shows the functionality of the network when the

data sets employed Matlab as a tool in simulating the

proposed algorithm functionality on node 1 (as monitoring

node), without removing suspected nodes. The figure

shows fluctuation in the accuracy of the collected data and

the network’s performance as a result of the residual

impact of deviated data on the neighbourhood data

accuracy, as shown in Figure 5.4. This fluctuation

continues up to the time where it becomes very heavy due

to the effect of losses and the preponderance of unhealthy

readings as they become the majority; as shown in Figure

5.1. Afterwards, this heavy fluctuation becomes constant

when the number of permanently deviated nodes is greater

than the healthy nodes at the end of the experiment (i.e.

from event 680000 upwards). Normally, this heavy

fluctuation does not occur in WSNs due to the redundancy

that schedules the function of nodes, which makes the

probability of failure occurring at the same time low. Even

if this happens, it can be detected by the dramatic change

in data accuracy and the increase in the weighted residual

which moves up to a constant level for a long period.

The figure also shows that even there is heavy fluctuation

in neighbour readings due to losses. The calculated median

that the algorithm depends on in its analysis does not

deviate until permanently faulty nodes become the

majority (as shown in Figure 5.3). This is because the

algorithm compares the difference between the new

calculated median and the old stored median values with

the application’s permitted degree of change. This is used

as a filter to remove median values that deviate from the

normal as a result of the neighbourhood measurements loss

impact.

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100
Figure 1. Performance

Event

P
e

rc
e

n
t

Net. pref.

Reading pref.

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100
Figure 2. Percentage of networtk losses

Event

P
e

rc
e

n
t

Per. of loss

0 2 4 6 8 10

x 10
4

0

50

100

150
Figure 3. Median

Event

D
e

g
re

e
s

 c
e

n
ti

g
ra

d
e

median

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100
Figure 4. Residual changes

Event

D
e

g
re

e
s

 c
e

n
ti

g
ra

d
e

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Figure 5. Threshold based on constant value

Figure 6 illustrates the proposed algorithm’s calculation of

the weighted residual for individual node measurements

with respect to the neighbourhood median. If this figure is

compared with Figure 5.4, almost the same changes in

detection can be seen but with different residual values;

these depend on the number of deviated readings at each

time interval.

If the algorithm is allowed to isolate faulty deviated nodes

in a specified monitoring window, the neighbourhood’s

performance is improved but with any new deviated node

making a higher impact, as shown in Figure 7.1. This

294

happens because of the increase in the impact of the

residual on the collected data as a result of reducing the

number of data samples at each time interval. On the other

hand, not removing the deviated reading affects the

accuracy of the collected data for the period it occurs, as

shown in Figure 5.1.

Figure 8 shows the proposed algorithm’s weighted residual

calculation when it is allowed to isolate faulty deviated

readings. The figure shows clearly the low number of

deviated nodes and the degree of their effect if compared

with Figure 6.4.

Figures 9 and 10 illustrate a comparison between the

accuracy of readings and network performance with and

without removing faulty nodes. Figure 9 shows that

removing the deviated nodes improved the accuracy of the

data but Figure 10 shows a reduction in the network’s

performance due to this removal because of the reduction

in the number of nodes in the neighbourhood (network

performance depends on connectivity and collected data).

0 1 2 3 4 5 6 7 8 9

x 10
4

0

1

2

3

4

5

6

7

8

9

10

Event number

D
e

g
re

e
 o

f
c

h
a

n
g

e

Algorithm detection threshold

Figure 6. Threshold based on constant value

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100
Figure 1. Performance

Event

P
e

rc
e

n
t

Net. pref.

Reading pref.

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100
Figure 2. Percentage of networtk losses

Event

P
e

rc
e

n
t

Per. of loss

0 2 4 6 8 10

x 10
4

0

50

100

150
Figure 3. Median

Event

D
e

g
re

e
s

 c
e

n
ti

g
ra

d
e

median

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100
Figure 4. Residual changes

Event

D
e

g
re

e
s

 c
e

n
ti

g
ra

d
e

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Figure 7. Threshold based on constant value

0 1 2 3 4 5 6 7 8 9

x 10
4

0

1

2

3

4

5

6

7

8

9

10

Event number

D
e
g
re

e
 o

f
c
h
a
n
g
e

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Node 13

Algorithm detection threshold

Figure 8. Threshold based on constant value

To check the effect of selecting neighbours on the

algorithm’s operation, 8 nodes were selected to be

neighbours of Node 1 instead of 11, depending on the high

correlation with Node 1 readings. These experiments

showed a slight improvement in data accuracy and in

network performance.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
x 10

4 Neighbourhood data accuracy level

Performance percentage

N
u
m

b
e
r

o
f

e
v

e
n

ts

Not removing deviated nodes

Removing deviated nodes

Figure 9. Reading performance

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Neighbourhood network performance level

Performance percentage

N
u

m
b

e
r

o
f

e
v

e
n

ts

Not removing deviated nodes

Removing deviated nodes

Figure 10. Network performance

The above experiments were repeated so that the analysis

could be carried out on Node 2 acting as the monitoring

295

node. Table 2 shows the detection interval and the number

of messages sent by Nodes 1 and 2 before isolating faulty

nodes. As can be seen from the table, some of the nodes

detected faulty nodes at the same event while others

detected them at different times. The table shows that more

algorithm warning messages were sent by Node 2. This

was as a result of the different neighbour packet losses

each node faced.

4.4 Validating the Algorithm’s Detection Using

Statistical Methods

Since there is no ground truth for the measured

phenomenon, statistical methods were used to check the

algorithm’s detection of the location of faults. This was

done by using the Box-Whisker method [16] (i.e. a box

plot) which quantifies changes in the measurements of

neighbour sensor nodes. With this method, the box

represents the middle of the data while the median is the

line around it at a range known as the inter quartile range.

The analysis shows that 97% of the faults detected by the

proposed algorithm lie within the same outlier regions as

those detected by the Box-Whisker method. The algorithm

detected 108133 changes of value for all nodes, and

conformed 83891 to be faulty deviations for a data set with

65% losses. Other 3% were measurements deviations

which happened at the same time instance and have the

same residual weight.

5. CONCLUSION AND FITURE WORK

A distributed performance algorithm is proposed here.

This algorithm enables each sensor node in a sensor

network to detect the Wireless Sensor Network’s

performance in a distributed method. It sends a warning

packet to the sink reporting any detection of degradation. It

tracks changes in the status of the nodes and compares

them with a reference deduced from the neighbourhood.

Simulation experiments showed that 97% of outliers

detected by the Box-Whisker method were detected by the

algorithm. These experiments showed a similar level of

detection of deviations by neighbour nodes that used the

algorithm, with slight changes in detection time due to

losses that each node faced in receiving its neighbours’

measurements. The experiment also showed that if a

detected faulty node was isolated from the neighbourhood

functionality, there will be a high impact of any new

measurement deviation on neighbourhood collected data

accuracy.

Numerous aspects can be considered in the future in order

to extend this work and improve the algorithm’s

functionality, such as checking the impact of the mobility

of sensor nodes on the algorithm’s functionality.

6. REFRENCES

[1] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj

Chehade,"Sensor network data fault types ", ACM

Transactions on Sensor Networks (TOSN), Volume 5 ,

Issue 3 (May 2009)

[2] Institute of Information and Control, Hangzhou Dianzi

University,"A New method for Node Fault Detection in

Wireless Sensor Networks", Sensors 2009, ISSN 1424-

8220.

[3] J.C. Wallis, C.L. Borgman, M.S. Mayernik, A. Pepe,

N. Ramanathan, and M. Hansen," Know the Sensor: Trust,

Data Quality, and Data integrity in Scientific Digital

Libraries", In Procs. 11th European Conference on

Research and Advanced Technology for Digital Libraries.

2007. Budapest, Hungary.

[4] Z. Yonggang, "Measurement and Monitoring in

Wireless Sensor Networks," PhD Thesis, Computer

Science Department, University of Southern California,

USA, June. 2004.

[5] Caimu Tang and Cauligi S. Raghavendra, "Correlation

Analysis and Applications in Wireless Microsensor

Networks," in Mobile and Ubiquitous Systems: Networking

and Services (MOBIQUITOUS 2004), 2004, pp. 184-193.

[6] G. Indranil, V. Robbert Renesse and P. Kenneth

Birman, "Scalable Fault-tolerant Aggregation in Large

Process Groups," in The 2001 International Conference on

Dependable Systems and Networks, 2001, pp. 433-442.

[7] C. T., S. K. and R. P., "Fault Tolerance in

Collaborative Sensor Networks for Target Detection,"

IEEE Transactions on Computers, vol. 53, pp. 320-333,

March 2004.

[8] C. M. Vuran, B. O. Akan and F. I. Akyildiz, "Spatio-

Temporal Correlation: Theory and Applications for

Wireless Sensor Networks," Computer Networks Journal

(Elsevier), vol. 45, pp. 245-261, June. 2004.

[9] H. Song and C. Edward, "Continuous Residual Energy

Monitoring in Wireless Sensor Networks," in International

Symposium on Parallel and Distributed Processing and

Applications (ISPA 2004), 2004, pp.

169-177.

[10] Linnyer Beatrys Ruiz, Isabela G. Siqueria and

Leonardo B. Oliveira, "Fault Management in Event-driven

Wireless Sensor Networks," in MSWiM’04, October 4-6,

Venezia, Italy, 2004.

 [11] O. Akan B. and I. Akyildiz F., "Event-to-sink

Reliable Transport in Wireless Sensor Networks,"

Networking, IEEE/ACM Transactions on, vol. 13, pp.

1003-1016, Oct. 2005.

[12] M. Ding, D. Chen, K. Xing and X. Cheng, "Localized

Fault-tolerant Event Boundary Detection in Sensor

Networks," in IEEE INFOCOM 2005, 2005, pp. 902-913.

[13] K. Bhaskar and S. S. Iyengar, "Distributes Bayesian

Algorithms for Fult-tolerant Event Region Detection in

Wireless Sensor Networks," IEEE Transaction on

Computers, vol. 53, pp. 421-250, March. 2004.

[14] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj

Chehade,"Sensor network data fault types ", ACM

Transactions on Sensor Networks (TOSN), Volume 5 ,

Issue 3 (May 2009)

296

 [15] Intel Lab “Intel Lab Experiment Data Set,” March

2007, http://berkeley.intel-research.net/labdata/.

 [16] K. Ni, N. Ramanathan, M. Chehade, L. Balzano, S.

Nair, S. Zahedi, G. Pottie, M. Hansen, and M.

Srivastav,"Sensor Network Data Faulty Types",

Transactions on Sensor Networks. 2008.

Table 1. Metrics calculated during the experiments

Metric Formula used

Weighted residual

values of deviated

neighbours

100*1* 







−

−

readingsofnumberTotal

agreedtsmeasuremenodneighborhoofNumber

Median

MediantsmeasuremenNode

Network performance
neighboursofNumberTotal

readingshealthyofNumber

Readings performance
readingsofNumberTotal

readingshealthyofNumber

Table 2. Event number of removed detected faulty nodes

 1 3 4 33 35 37 39

Node1 -- 66240 60960 15840 53760 62880 66720

Time’s -- 17 15 15 37 20 18

Node2 -- 66240 60960 18240 24000 24000 66720

Time’s -- 13 6 29 21 16 24

Table 3. Detection comparisons between the proposed algorithm and the Box-Whisker method

 Detection Method

Algorithm Box- Whisker Method

Detected faulty data 108133

Conform 83891

86246

Not faulty data 325639 323284

297

