
 

 

 

 

  

 

ABSTRACT 

 

Wireless Sensor Networks are increasingly attracting 

many fields for monitoring and understanding the 

characteristics of different applications. Unfortunately, 

these characteristics also have an impact on the 

functionality of the network and, in some cases, cause it 

to deviate from its normal operation. Also, they cause a 

reduction in the quality and the quantity of the data 

collected by the network. This paper proposes a 

distributed monitoring performance algorithm which 

tracks these deviations and isolates those that degrade 

network functionality. The results obtained from the 

empirical and simulation experiments show that the 

algorithm achieves a high-level of detection reliability 

with resilience to both high packet loss and 

environmental changes. 

 

Keywords: Wireless Sensor Networks, WSNs 

performance measurement, on-line fault detection, WSN 

outlier detection. 

 

1. INTRODUCTION 

 

 

EVIATIONS of nodes from their normal operation in 

Wireless Sensor Networks (WSNs) are regular 

occurrences, not isolated events as in traditional networks. 

This is due to the goals in network design of reducing the 

cost of node manufacture and deployment, reducing the 

size of network nodes, and reducing their energy 

consumption. Such reductions directly affect sensor node 

resources and the flexibility of the protocol used; they also 

increase the impact of external and internal interference. 

This deviates network nodes operation from their normal 

behavior and causes reduction in the quality and the 

quantity of data collected by the network. 

 

Operational deviations in the network and its nodes arise 

as a result of systematic or transient errors [1]. Systematic 

error is mainly caused by hardware faults, such as 

calibration errors after prolonged use, a reduction in 

operating power levels, and changes in operating 

conditions. This type of error continuously affects the 

operation of nodes until the problem is rectified. Transient 

errors, on the other hand, occur because of temporary 

 
 

external or internal circumstances, such as various random 

environmental effects, unstable characteristics of the 

hardware, software bugs, channel interface and multi-path 

effect. This type of error deviates nodes’ operations until 

the effect disappears.  

 

The effects of these deviations can be divided into two 

groups. The first reduces the quality of the data at a node 

and/or network level by deviating measurements from their 

actual values. This happens either by a constant drift value 

(i.e. they become biased), changes in the differences 

between a sensor measurement and the actual value (i.e. 

drift), or sensor measurements remaining constant 

regardless of changes in the actual value (i.e. complete 

failure). The second effect reduces the quantity of data 

collected by the network. This happens either by the node 

dropping packets, or by it constructing incorrect 

collaboration trees for data gathering and routing. 

 

In some practical deployments, such as [2]-[4], an analysis 

of the collected network data showed a reduction in data 

quality which reached between 49% and 55% for that 

quantity of data. This reduction is caused by the deviations 

mentioned above and, in some cases, the network needed 

to be redeployed again to collect the required data because 

the available data were meaningless. The researchers’ 

analysis for the data collected in these deployments 

expected an improvement of the deployed network’s 

functionality of up to 51%, in terms of resource usage and 

the accuracy of the collected data, if a real-time monitoring 

tool is used to detect, report and isolate such deviations.  

 

The work in this paper is motivated by the need to find a 

tool that will use a very low level of network resources but 

will, at the same time, detect deviations that affect the 

quality and quantity of data collected by the network 

before they have a high impact on the network’s 

functionality. The paper proposes distributed performance 

network monitoring tools that detect these deviations and 

isolate the detected faulty nodes from the neighbourhood’s 

functionality. The empirical and simulation experiments 

that were conducted showed a high level of performance of 

the proposed algorithm; it was also resilient to both high 

packet loss and environmental changes. Some of the most 

important results from the simulation experiments, which 

showed the ability of the algorithm in tracking spatial and 

temporal correlations between neighbour nodes, are 

discussed in this paper.  
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The remainder of this paper is organised as follows: 

Section 2 discusses related work in WSN functionality 

degradation detection; this is followed by an explanation 

of the algorithm approach. The fourth section discusses the 

results of the experiments at node level. Finally, the paper 

ends with a conclusion and suggestions for future work. 

 

2. RELATED WORK 

 

In data stream applications, such as WSNs, deviations in 

the data are detected by generating the residual of a 

monitored variable in terms of physical or analytical 

redundancy [5], [6]. Physical redundancy generates an 

estimate of the actual value of a quantity on the basis of the 

available redundant information. This is accomplished, by 

either statistical methods (such as descriptive statistics and 

inferential statistics), or by data fusion. The main 

advantage of this type of redundancy is that it is relatively 

easy to implement and provides a high degree of certainty. 

The reliability and performance of such methods mainly 

rely on measurement accuracy. Analytical redundancy 

methods, on the other hand, provide values other than 

direct measurements from the parameters and variables of 

interest using a process model such as Kalman filter, Parity 

relation, Principal Component Analysis (PCA) and 

Artificial Neural Networks (ANN). These methods are not 

easy to implement and they depend on the reliability of the 

process model. 

 

Implementing most of the above-mentioned methods in 

WSNs, especially analytical methods, is either not 

possible, needs high spatial resource nodes, or has a high 

impact on the network’s lifetime. As a result, researchers 

have tried to simplify the complexity of the above methods 

as a tradeoff with the method’s detection accuracy or have 

used more than one method that increases detection 

accuracy. 

 

Abdelrahman, in [10], used a fusion algorithm that utilises 

a Parzen estimator for calculating a probability distribution 

function (pdf) for measurements. This constructed pdf is 

based on weighted Gaussian functions whose parameters 

depend on the sensor’s average noise level and its self-

confidence. His proposed method needs relatively high 

resources in terms of the processing and memory required 

as it calculates the pdf of different neighbour node 

measurements and also calculates the intersecting areas of 

these pdfs and the intersection centroid in order to find the 

estimated true measurements. In addition, his algorithm 

needs to estimate the pdf standard deviation of each sensor 

node based on the standard deviation of the noise 

associated with an individual node.  This makes his 

algorithm complex in term of the resources available in the 

existing sensor node platform which also needs a spatial 

resources node to implement it. 

 

Elnahrawy, in [7], used a Bayesian approach that combines 

prior knowledge of sensor readings, the noise 

characteristics, and the observed noisy readings. This 

approach has proved to be robust in the detection of sensor 

node deviation but, because of its complexity and its 

model parameter calculations, the algorithm needs to be 

implemented on a spatial node with high resources. To 

reduce the complexity of the above-mentioned algorithm, 

Krishnamachari, in [11], proposed a distributed Bayesian 

algorithm for detecting and correcting these deviations. 

His algorithm was simple but it does not detect the gradual 

drift changes in the deviation of nodes. In addition, 

network coverage problems are not detected.   

 

Bettencourt, in [12], proposed a distributed algorithm that 

would detect measurement errors and infer missing 

readings. His algorithm, compared with the Bayesian 

method, is faster in learning and has low memory storage. 

Unfortunately, his algorithm is not resilient to loss and 

drift.  

 

From the perspective of packet losses, Ramanathan, in 

[13], proposed a tool (called Sympathy) that detects and 

debugs failures in Wireless Sensor Networks. The 

algorithm debugs low-level statistical changes in the 

network by drawing correlations between seemingly 

unrelated, distributed events; it also produces graphs that 

highlight these correlations. From this, the algorithm 

detects root-cause failures. Unfortunately, this tool needs 

to send and receive test packets to conform the detection of 

a failure. Moreover, it tests only the low level parameters 

to detect network deviations. 

 

3. ALGORITHM APPROACH 

 

In order to monitor the performance of WSNs, the Voting 

Median Based Algorithm for Approximate Performance 

Monitoring (VMBA) is proposed. This algorithm is a 

passive voting algorithm that collects its metrics directly 

from the application by utilising the overhearing that exists 

in a neighbourhood. The analysis of the proposed 

algorithm has been simplified such that it only requires the 

most recent readings of neighbour measurements at that 

time instant and, from it, a neighbourhood reference for the 

operation that has been deduced: i.e. neighbourhood 

measurements median. Then, the time instant data 

collected from that neighbourhood are compared with this 

reference by calculating the residual of the difference. 

After that, each residual is tested against a threshold whose 

accuracy depends on the rate of the propagation change of 

the monitored phenomenon at the end of the sensing range 

of the monitoring node. This simple approach reduces the 

complexity of the tracked method, reduces the memory 

that is required, and makes it possible to implement on 

existing sensor node platforms.  

 

The algorithm is divided into four different modules; i.e. 

listening and filtering, data analysis and threshold test, 

decision and confidence control and warning packet 

exchange. In this section we give some definitions and 

then the VMBA functional algorithm presented.  
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3.1 Definitions 

 

The notations used in the algorithm are listed below: 

 

• 
iS : Monitoring node used in VBAM algorithm. 

• T: waiting time that depends on the reporting rate, 

node location, and network synchronization time. 

• k: Number of neighbours.  

• N( iS ): Set of iS  neighbour nodes; i.e. 1iS , 

2iS ,…, ikS . 

• 
i

jx : Measurement of node j received by 

monitoring node i. 

• 
i

jL : Loss counter at node j (by monitoring node 

i). 

• LC , MC : Minimum and maximum limits of the 

sensor node that depends on its characteristics. 

• 
i

jD : Deviation detection counter of node j by 

monitoring node i. 

• imed : Neighbourhood sensed value median 

calculation made by monitoring node i. 

• 1−imed : Previous neighbourhood median 

calculation. 

• med∆ : Allowed change in the phenomenon 

characteristic that depends on the temporary  and 

permanent precision of the  application. 

• iM  : Median deviation counter at monitoring 

node i. 

• jd :  Deviation of node j from calculated median. 

• iR : Uncorrelated readings counter at each time 

interval. 

• 
i

jCOV : Coverage problem counter of node j 

monitored by node i. 

• iN : Neighborhood malfunctions counter. 

•  MΘ ,
CΘ , 

dΘ ,
wΘ : Thresholds of median, 

coverage, distortion and monitoring window 

respectively whose values depend on the 

tolerance of the network protocol characteristics 

detected changes. 

• 
iML  : Median of 

i

jL  at the monitoring window 

size. 

 

3.2 Algorithm Modules 

 

The listening and filtering module is responsible for 

examining the validity of the received neighbour nodes 

measurements by filtering those readings beyond the range 

of the sensor’s physical characteristics; as shown in the 

pseudo-code in Figure 1. The module then constructs 

neighbour readings tables and builds statistics in the loss 

table for neighbour readings.  

 

This module is considered the most important module in 

the algorithm because it is concerned with the construction 

of tables that the algorithm depends on for its analysis. 

 

1: Each iS  sense the phenomenon and wait for    

     time T to receive N( iS ) readings 

2:    IF  t > T THEN 

3:      For each un received 
i

jx  increment 
i

jL ; 

4:       IF     LC >
i

jx > MC  

5:       Remove 
i

jx  from data set and increment 
i

jD    

6:      Calculate  imed  of  the available iS  data set 

Figure 1. Listening and filtering module pseudo-code 

 

The second module; i.e. data analysis and threshold test 

module; tests the content of these tables. This is done by 

evaluating the data with regard to assigned dynamic or 

static limits calculated from a reference value or median. 

The proposed algorithm has followed a straightforward 

approach in calculating faulty deviations in sensor 

functionality. Its analysis assumes that true measurements 

of a phenomenon’s characteristics, following a Gaussian 

pdf, centre on a calculated median of neighbourhood 

readings. Any deviation is controlled by the correlation 

expected at the end of the sensing range of a node, and the 

sensor nodes’ measuring accuracy (i.e. the phenomenon’s 

power dissipation model [14], where most of the physical 

processes monitored by a WSN are typically modeled as 

diffusion models with varying dispersion functions). This 

assumption is based on the fact that the standard deviation 

of the changes is specified by the network designed goals 

at the end of monitoring node sensing rang. Any sensor 

measurement that is not in this region is considered 

deviated to a degree equal to the ratio of the distance from 

the neighbourhood median value to the median value. This 

is because any external impact will affect all neighbours at 

the same time but to a different degree depending on 

theirlocation from the nodes and the position of the nodes 

from each other. 

 

In addition, the second module tests the effect of any 

losses on the reliability of the collected data by calculating 

the degree of distortion in the neighbourhood data that has 

occurred because of its affect on the collected data 

accuracy and network functionality. This is done by 

calculating the ratio of the number of healthy readings to 

the total number readings as shown in Figure 2 step 8. 

 

1: IF  |
imed -

1−imed | > med∆  

    Increment iM  and let imed = 1−imed  

2:    jd = |
imed -

i

jx | 
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3:         IF jd > 1Θ  and  |
i

ix -
i

jx | < 1Θ  

4:             Increment  
i

jCOV  

5:          ELSE increment  
iR  

6:                  IF     
k

Ri
 > 40% 

7:                     Increment  iN  

8:                          IF  
k

Ri
* jd > 1Θ  

9:                            Increment 
i

jD  

Figure 2. Data analysis and threshold test module pseudo-

code 

 

The third module; i.e. Decision confidence control 

module; is concerned with tracking changes in the health 

of neighbour nodes in an assigned time window. This is set 

depending on the characteristics of the network application 

and the required response detection time. If exceeded, a 

request is sent to module four in order to send a detection 

message to the sink identifying the suspected node number, 

the type of fault, the number of times it has been detected 

and the effect of the detection on the neighbourhood data 

and communication. The function of this module is shown 

in Figure 3. 

 

When module four receives a send request,  it checks its 

neighbours warning exchange memory to ensure that none 

of the neighbour nodes have reported the same fault in that 

monitoring window period. If none of the neighbours have 

so reported, it sends a message or it cancels the request. In 

addition, this module tests warning messages received 

from its neighbours with statistics from module three.  

 

1:    Calculate iML  

2:    IF  
iML  > 60% 

3:      Send to module 4 a request to send an 

          inefficient power consumption warning   

          message 

4:         IF 
iM > MΘ  

5:            Send to module 4 a request to send a 

                neighbourhood malfunction  due to losses 

                warning message 

6:                 IF  
i

jCOV  > CΘ  

7:                Send to module 4 a request to send to 

                   detecting node j  a coverage    

                   problem message 

8:       IF  distortion > dΘ  & median of 
i

jL  > 60% 

9:         Send to module 4 a request to send a 

            degrade detection in network  

            functionality message 

10:                                 IF 
i

jD  >    wΘ     

11:                                 Send to module 4 a request  

                                      to send a detection of node 

                                      j  malfunction message  

Figure 3. Decision confidence control module pseudo-

code 

 

If the suspected node flags up a counter indication smaller 

than a threshold (that is, below the 30% set for the 

experiments), a message will be released indicating ‘NO-

FAUL-EVIDENCE’ regarding the received warning 

message. On the other hand, if the threshold is higher or 

equal to the threshold, then the node cancels any similar 

warning message request from module three during that 

monitoring period. This is to ensure the reliability of the 

warning message detection and to correct any incorrect 

detection that may occur because of losses or other 

network circumstances. Moreover, module four reduces 

the algorithm warning packets released by checking if any 

of its neighbours sent the same message at that time 

interval. If it been sent the algorithm will discard module 

three requests as shown in Figure 4 part 3. 

 

4. PERFORMANCE EVALUATION 

 

VMBA algorithm performance can be evaluated for eight 

different aspects: deviation detection in single and multi-

hop levels, algorithm detection threshold, algorithm 

detection confidence, algorithm spatial and temporary 

change tracking, the impact of packet losses on algorithm 

analysis, resource usage at node and network levels, the 

impact of algorithm programming location in protocol 

stack, and algorithm released warning messages. In this 

paper, we considered the algorithm spatial and temporary 

changes tracking for neighbourhood sensor nodes at node 

level.  

 

1: Receiving neighbour warning 

a) Check received warning with the same 

module 3 counter of reported node. 

b) IF module 3 counter < 30% 

c) Release ‘‘NO-EVIDENCE-OF-FAULT’ 

message 

d) ELSE flag the stop sending of the same 

message from the node at this monitoring 

time.   

2: Receiving module 3 request 

a) Test stop flag of received request 

warning  

b) IF flag = 1 discard message 

c) IF send message repeated 3 times send 

‘FAULT_MESSAGE_STOP’ message 

and flag stop fault counter. 

d) ELSE send the requested message by 

module 3. 

3: Testing warning packet release 

a) IF detected fault returns to normal reset 

the same fault counters, send 

‘FAULT_CLEAR’ message and 

recalculate protocol tables. 

b)  IF step 2 and 3-a alternate for the same 
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fault three times in a predefined 

monitoring window, the module send s 

an‘TOPOLOGY_UNSTABLEe’ warning 

message to report  the  detection and 

flags  a permanent fault  counter  to stop 

reporting  the same fault. 

c) By the end of the predefined period reset 

all counters. 

Figure 4.  Warning packet exchange module pseudo-code 

 

4.1 Data set 

 

To evaluate the performance of spatial-temporal data 

deviation algorithm tracking, and test the effect of 

removing the confirmed faulty node on the accuracy of the 

neighbourhood collected data , real world data sets were 

used such as the Intel Lab data set [15]. This data set 

consist of temperature, humidity and light intensity 

measurements, and was collected by 54 sensor nodes 

deployed in the Intel lab from February 28th until April 5th 

2004 for 720 hours with a scheduled communication 

approach used with a waking period of four seconds and a 

13% duty cycle.  The deployment goal of this network was 

to test the behaviour of a sensor network with different 

conditions of battery power depletion, traffic generation, 

and multi-hop aspects. As a result of this, the data set 

collected from this experiment had a lot of missing data, 

noise, and failed sensors, especially when the battery levels 

were low at the end of the experiment.   

 

4.2 Performance Evaluation Metrics 

 

Four metrics were chosen to analyse the results of the 

experiments, as shown in Table 1. The first metric is the 

residual value of deviated neighbours, which is the 

difference between the neighbourhood median and the data 

at a given time instance. This metric computes the 

diversity level of individual readings from other 

neighbourhood nodes. In addition, it shows the behaviour 

of the fault. The second metric was the weighted residual 

metrics: i.e. the difference between a reading and the 

median calculated at a time instance multiplied by the ratio 

of similar correlated readings compared to the total 

number of readings at the same time instance. This metric 

shows the weight of each deviation on the neighbourhood 

node collected data. The third metric was network 

performance, which is the ratio of healthy readings as 

opposed to the total number of nodes in the 

neighbourhood. This metric computes the effect of losses 

on the network’s functionality.  

 

4.3 Experimental  Results 

 

Figure 5 shows the functionality of the network when the 

data sets employed Matlab as a tool in simulating the 

proposed algorithm functionality on node 1 (as monitoring 

node), without removing suspected nodes. The figure 

shows fluctuation in the accuracy of the collected data and 

the network’s performance as a result of the residual 

impact of deviated data on the neighbourhood data 

accuracy, as shown in Figure 5.4. This fluctuation 

continues up to the time where it becomes very heavy due 

to the effect of losses and the preponderance of unhealthy 

readings as they become the majority; as shown in Figure 

5.1. Afterwards, this heavy fluctuation becomes constant 

when the number of permanently deviated nodes is greater 

than the healthy nodes at the end of the experiment (i.e. 

from event 680000 upwards).  Normally, this heavy 

fluctuation does not occur in WSNs due to the redundancy 

that schedules the function of nodes, which makes the 

probability of failure occurring at the same time low. Even 

if this happens, it can be detected by the dramatic change 

in data accuracy and the increase in the weighted residual 

which moves up to a constant level for a long period. 

 

The figure also shows that even there is heavy fluctuation 

in neighbour readings due to losses. The calculated median 

that the algorithm depends on in its analysis does not 

deviate until permanently faulty nodes become the 

majority (as shown in Figure 5.3). This is because the 

algorithm compares the difference between the new 

calculated median and the old stored median values with 

the application’s permitted degree of change.  This is used 

as a filter to remove median values that deviate from the 

normal as a result of the neighbourhood measurements loss 

impact. 
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Figure 5. Threshold based on constant value 

 

Figure 6 illustrates the proposed algorithm’s calculation of 

the weighted residual for individual node measurements 

with respect to the neighbourhood median. If this figure is 

compared with Figure 5.4, almost the same changes in 

detection can be seen but with different residual values; 

these depend on the number of deviated readings at each 

time interval. 

 

If the algorithm is allowed to isolate faulty deviated nodes 

in a specified monitoring window, the neighbourhood’s 

performance is improved but with any new deviated node 

making a higher impact, as shown in Figure 7.1. This 
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happens because of the increase in the impact of the 

residual on the collected data as a result of reducing the 

number of data samples at each time interval. On the other 

hand, not removing the deviated reading affects the 

accuracy of the collected data for the period it occurs, as 

shown in Figure 5.1. 

 

Figure 8 shows the proposed algorithm’s weighted residual 

calculation when it is allowed to isolate faulty deviated 

readings. The figure shows clearly the low number of 

deviated nodes and the degree of their effect if compared 

with Figure 6.4. 

 

Figures 9 and 10 illustrate a comparison between the 

accuracy of readings and network performance with and 

without removing faulty nodes. Figure 9 shows that 

removing the deviated nodes improved the accuracy of the 

data but Figure 10 shows a reduction in the network’s 

performance due to this removal because of the reduction 

in the number of nodes in the neighbourhood (network 

performance depends on connectivity and collected data). 
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Figure 6. Threshold based on constant value 
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Figure 8. Threshold based on constant value 

 

To check the effect of selecting neighbours on the 

algorithm’s operation, 8 nodes were selected to be 

neighbours of Node 1 instead of 11, depending on the high 

correlation with Node 1 readings. These experiments 

showed a slight improvement in data accuracy and in 

network performance. 
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Figure 9. Reading performance 
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Figure 10. Network performance 

 

The above experiments were repeated so that the analysis 

could be carried out on Node 2 acting as the monitoring 
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node. Table 2 shows the detection interval and the number 

of messages sent by Nodes 1 and 2 before isolating faulty 

nodes. As can be seen from the table, some of the nodes 

detected faulty nodes at the same event while others 

detected them at different times. The table shows that more 

algorithm warning messages were sent by Node 2. This 

was as a result of the different neighbour packet losses 

each node faced. 

 

4.4 Validating the Algorithm’s Detection Using 

Statistical Methods 

 

Since there is no ground truth for the measured 

phenomenon, statistical methods were used to check the 

algorithm’s detection of the location of faults. This was 

done by using the Box-Whisker method [16] (i.e. a box 

plot) which quantifies changes in the measurements of 

neighbour sensor nodes. With this method, the box 

represents the middle of the data while the median is the 

line around it at a range known as the inter quartile range.  

 

The analysis shows that 97% of the faults detected by the 

proposed algorithm lie within the same outlier regions as 

those detected by the Box-Whisker method. The algorithm 

detected 108133 changes of value for all nodes, and 

conformed 83891 to be faulty deviations for a data set with 

65% losses. Other 3% were measurements deviations 

which happened at the same time instance and have the 

same residual weight. 

 

5. CONCLUSION AND FITURE WORK 

 

A distributed performance algorithm is proposed here. 

This algorithm enables each sensor node in a sensor 

network to detect the Wireless Sensor Network’s 

performance in a distributed method. It sends a warning 

packet to the sink reporting any detection of degradation. It 

tracks changes in the status of the nodes and compares 

them with a reference deduced from the neighbourhood.  

 

Simulation experiments showed that 97% of outliers 

detected by the Box-Whisker method were detected by the 

algorithm. These experiments showed a similar level of 

detection of deviations by neighbour nodes that used the 

algorithm, with slight changes in detection time due to 

losses that each node faced in receiving its neighbours’ 

measurements. The experiment also showed that if a 

detected faulty node was isolated from the neighbourhood 

functionality, there will be a high impact of any new 

measurement deviation on neighbourhood collected data 

accuracy. 

 

Numerous aspects can be considered in the future in order 

to extend this work and improve the algorithm’s 

functionality, such as checking the impact of the mobility 

of sensor nodes on the algorithm’s functionality.  
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Table 1. Metrics calculated during the experiments 

Metric Formula used 

Weighted residual 

values of deviated 

neighbours 

100*1* 







−

−

readingsofnumberTotal

agreedtsmeasuremenodneighborhoofNumber

Median

MediantsmeasuremenNode  

Network performance 
neighboursofNumberTotal

readingshealthyofNumber  

Readings performance 
readingsofNumberTotal

readingshealthyofNumber  

 
Table 2. Event number of removed detected faulty nodes 

 1 3 4 33 35 37 39 

Node1 -- 66240 60960 15840 53760 62880 66720 

Time’s -- 17 15 15 37 20 18 

Node2 -- 66240 60960 18240 24000 24000 66720 

Time’s -- 13 6 29 21 16 24 

 
Table 3. Detection comparisons between the proposed algorithm and the Box-Whisker method 

 Detection Method 

Algorithm Box- Whisker Method 

Detected faulty data 108133 

Conform 83891 

86246 

Not faulty data 325639 323284 
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